
Mathematicians, theoretical physicists, and engineers unacquainted with tensor calculus are at a serious disadvantage in several fields of pure and applied mathematics. They are cut off from the study of Reimannian geometry and the general theory of relativity. Even in Euclidean geometry and Newtonian mechanics (particularly the mechanics of continua), they are compelled to work in notations which lack the compactness of tensor calculus. This classic text is a fundamental introduction to the subject for the beginning student of absolute differential calculus, and for those interested in t... Read More
Formats
Paperback
Mathematicians, theoretical physicists, and engineers unacquainted with tensor calculus are at a serious disadvantage in several fields of pure and applied mathematics. They are cut off from the study of Reimannian geometry and the general theory of relativity. Even in Euclidean geometry and Newtonian mechanics (particularly the mechanics of continua), they are compelled to work in notations which lack the compactness of tensor calculus. This classic text is a fundamental introduction to the subject for the beginning student of absolute differential calculus, and for those interested in t... Read More