x

Taxicab Geometry: An Adventure in Non-Euclidean Geometry

Taxicab Geometry: An Adventure in Non-Euclidean Geometry

By: Eugene F. Krause

  • Book
  • Reg. Price › $7.95
  • eBook
  • Sale Price › $5.56
  • Book + eBook
  • Reg. Price › $8.75
  • Share this book:
  • Share on Google+

This entertaining, stimulating textbook offers anyone familiar with Euclidean geometry — undergraduate math students, advanced high school students, and puzzle fans of any age — an opportunity to explore taxicab geometry, a simple, non-Euclidean system that helps put Euclidean geometry in sharper perspective.
In taxicab geometry, the shortest distance between two points is not a straight line. Distance is not measured as the crow flies, but as a taxicab travels the "grid" of the city street, from block to block, vertically and horizontally, until the destination is reached. Because of this non-Euclidean method of measuring distance, some familiar geometric figures are transmitted: for example, circles become squares.
However, taxicab geometry has important practical applications. As Professor Krause points out, "While Euclidean geometry appears to be a good model of the 'natural' world, taxicab geometry is a better model of the artificial urban world that man has built."
As a result, the book is replete with practical applications of this non-Euclidean system to urban geometry and urban planning — from deciding the optimum location for a factory or a phone booth, to determining the most efficient routes for a mass transit system.
The underlying emphasis throughout this unique, challenging textbook is on how mathematicians think, and how they apply an apparently theoretical system to the solution of real-world problems.

Reprint of the Addison-Wesley Publishing Company, Menlo Park, California, 1975 edition.
AvailabilityUsually ships in 24 to 48 hours
ISBN 100486252027
ISBN 139780486252025
Author/EditorEugene F. Krause
FormatBook
Page Count96
Dimensions5 1/2 x 8 1/2

You might also Like...

Out of Stock Notification: